Statistical inference: confidence
intervals, p-values




Introduction

Statistical inference is the act of generalizing

degree of certainty.
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Statistics vs. Parameters

Sample Statistic — any summary measure calculated from data; e.g.,
could be a mean, a difference in means or proportions, an odds ratio,
or a correlation coefficient

Population parameter — the true value/true effect in the entire

population of interest




Distribution of a statistic...

But the distribution of a statistic is a theoretical construct.

Statisticians ask a thought experiment: how much would
the value of the statistic fluctuate if one could repeat a
particular study over and over again with different samples
of the same size?

By answering this question, statisticians are able to pinpoint
exactly how much uncertainty is associated with a given
statistic.



Distribution of a statistic

Two approaches to determine the distribution of a
statistic:
o 1. Computer simulation

o Repeat the experiment over and over again virtually!
o More intuitive; can directly observe the behavior of statistics.

o 2. Mathematical theory
° Proofs and formulas!
o More practical; use formulas to solve problems.



Example of computer
simulation...

How many heads come up in 100 coin tosses?

Flip coins virtually
o Flip a coin 100 times; count the number of heads.

o Repeat this over and over again a large number of times (we’ll try 30,000
repeats!)

> Plot the 30,000 results.




Coin tosses...
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Conclusions:

We usually get
between 40 and 60
heads when we flip a
coin 100 times.
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It's extremely unlikely
that we will get 30
heads or 70 heads
(didn’t happen in
30,000 experiments!).
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Symbol Check

ﬂ X The mean of the sample means.

0 _ The standard deviation of the sample means. A/so
X called "the standard error of the mean.”



Mathematical Proof

If X is a random variable from any distribution with known mean,
E(x), and variance, Var(x), then the expected value and variance of
the average of n observations of X is:
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he Central Limit Theorem:

If all possible random samples, each of size n, are taken from
any population with a mean u and a standard deviation o,
the sampling distribution of the sample means (averages)

will:

1. have mean: L = L

X

2. have standard deviation: O. =
X
il

3. be approximately normally distributed regardless of the shape
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“*|A. Population (individual values)
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Law of Large Numbers

As a sample gets larger and larger, the x-bar approaches .
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Central Limit Theorem caveats for small
samples:

For small samples:

> The sample standard deviation is an imprecise estimate of the true
standard deviation (0); this imprecision changes the distribution to
a T-distribution.

o A t-distribution approaches a normal distribution for large n (=100), but has
fatter tails for small n (<100)

o If the underlying distribution is non-normal, the distribution of the
means may be non-normal.



Summary: Single population
mean (large n)

Hypothesis test:

_observed mean — null mean
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Single population mean (small
n, normally distributed trait)

Hypothesis test:
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