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Introduction 

• “Essentially, all (statistical) models are wrong, but some are useful” 
George E. P. Box (1987)

• All econometric models are description of real world phenomenon using 
mathematical concepts, i.e., they are just simplifications of reality

• Regression analysis can be very useful if it is carefully designed
• In accordance with current good practice guidelines, and
• A thorough understanding of the limitations of the methods used

• If not, it can be not only inaccurate but also potentially damaging by 
misleading policymakers, practitioners and public

• Example: Relationship between levels of government debt and rates of economic 
growth (Reinhart & Rogoff controversy) 



Introduction (Cont.)

• This type of questions are simple cause-and-effect questions of the 
form

• Does X cause Y?
• If X causes Y, how large is the effect of X on Y?
• Is the size of this effect large relative to the effects of other causes of Y?

• Simple cause-and-effect questions are the motivation for much 
empirical work in economics

• Definitive answers to such questions may not always be possible to 
formulate due to data constraints    



Causal Inference

• Causal effect of program or policy interventions
• Some examples:

• Job training programs on earnings and employment
• Class size on test scores
• Minimum wage on employment
• Military service on earnings and employment
• Tax-deferred saving programs on savings accumulation
• Promotion of nutrition sensitive food value chains on nutritional outcomes
• Farm size on agricultural productivity or income 



Causal Inference (cont.)

• Causal effect of economic and behavioral variables
• Some examples:

• Interest rate on credit card usage
• Incentive scheme on employer productivity
• Remittances on household consumption
• International prices on domestic prices
• Terrorist risk on economic behavior



Causes of Effects vs. Effects of Causes

• Important distinction between cause and effect:
• Cause: an event that generates some phenomenon
• Effect: the consequence (or one of the consequences) of the cause

• Crucial asymmetry in the difficulty of learning about the cause of an 
effect versus learning about the effect of a cause.

• Goal: understand why this asymmetry exists and what are its 
consequences for conducting research in economics as well as in 
other social sciences



Causal Inference Framework

• Potential Outcomes: each individual has a different outcome 
corresponding to each level that the treatment takes

• Potential outcomes can be random or non-random

• Assignment Mechanism: each individual is assigned treatment based 
on some mechanism, and this mechanism guides how estimation and 
inference will be conducted

• Assignment Mechanism will generate a random “treatment status” for 
identification purposes



Potential Outcomes: Causation as 
Manipulation
• Causal analysis: must have ability to expose or not expose each unit 

to action of cause
• Essential “each unit be potentially exposable to any one of the 

causes” (Holland, 1986)
• If units could have been exposed to cause but they were not in practice: no 

problem
• If units could not have been exposed to cause in any state of world: our cause 

might not really be a cause
• Example: worker’s education level versus worker’s gender



Potential Outcomes: Causation as 
Manipulation (Cont.)
• Each unit has as many potential outcomes as different possible 

treatments there are
• Called “potential” outcomes because only one of them is observed
• Observed outcome is the one that corresponds to level of the treatment 

actually selected by (or assigned to) the unit.
• This introduces the idea of counterfactual: what would the outcome 

of this unit look like if the unit had been exposed to a different 
treatment?

• Key ideas:
• (Non-manipulable) attributes and (manipulable) causes
• Pre-exposure (“pre-treatment”) and post-exposure (“post-treatment”)



Potential Outcomes: Causation as 
Manipulation (Cont.)
• Basic Binary Treatment Setup

• Each unit 𝑖𝑖 is exposed to a binary treatment
• 𝑇𝑇𝑖𝑖 = 1 if unit 𝑖𝑖 received treatment cause
• 𝑇𝑇𝑖𝑖 = 0 if uni𝑖𝑖 received the control cause

• Each unit 𝑖𝑖 is has two potential outcomes:
• 𝑌𝑌𝑖𝑖(1): outcome that would be observed if unit 𝑖𝑖 were exposed to treatment 

cause
• 𝑌𝑌𝑖𝑖(0): outcome that would be observed if unit 𝑖𝑖 were exposed to control 

cause

• Observed data: 𝑌𝑌𝑖𝑖 ,𝑇𝑇𝑖𝑖 where
𝑌𝑌𝑖𝑖 = 𝑇𝑇𝑖𝑖 ∗ 𝑌𝑌𝑖𝑖 1 + 1 − 𝑇𝑇𝑖𝑖 ∗ 𝑌𝑌𝑖𝑖(0)



Stable Unit Treatment Value Assumption 
(SUTVA)

• Key (implicit) assumption: 𝑌𝑌𝑖𝑖(𝑡𝑡) depends only on unit 𝑖𝑖’s treatment status
• Implies that potential outcomes for unit 𝑖𝑖 are unaffected by the treatment 

of unit 𝑗𝑗
• Rules out “interference” and “spillovers” across units
• Examples:

• Effect of fertilizer or chemicals on crop yield 
• Effect of flu vaccine on hospitalization

• This assumption may be problematic:
• Choose the units of analysis to minimize interference across units!
• Address “interference” and “spillovers” explicitly.



Causality with Potential Outcomes

• Treatment Effect with Binary Treatments:

𝜏𝜏𝑖𝑖 ≔ 𝑌𝑌𝑖𝑖 1 − 𝑌𝑌𝑖𝑖(0)

• Effect of the treatment cause (relative to the control cause) on unit 𝑖𝑖
• 𝜏𝜏𝑖𝑖 depends on potential outcomes, not observed outcomes



Fundamental Problem of Causality

• For each unit 𝑖𝑖, we observe either 𝑌𝑌𝑖𝑖(1) or 𝑌𝑌𝑖𝑖(0), but never both!
• At the individual level, there is simply no way to learn about the causal 

effect (unless large amount of homogeneity in population)
• We can define aggregate estimands of interest about which we will be 

able to learn

• If we have multiple units, we can estimate average treatment effect (ATE)
𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 ≔ 𝐸𝐸[𝑌𝑌𝑖𝑖 1 ] − 𝐸𝐸[𝑌𝑌𝑖𝑖(0)]



Assignment Mechanism

• Crucial ingredient in causal inference is the process by which each 
unit is selected or was assigned the particular treatment condition 
that it received

• It is a conditional probability of receiving treatment as a function of 
potential outcomes and covariates

• Two important cases
• Random assignment: Known, independent of potential outcomes
• Unconfounded assignment: Unknown, conditionally independent of potential 

outcomes
• Individualistic, probabilistic, and unconfounded assignment 

mechanisms 



Key Ideas

• Assignment mechanism is the procedure that determines which units are 
selected for treatment intake

• Random assignment
• Selection on observables
• Selection on unobservables

• Typically, treatment effects models attain identification by restricting the 
assignment mechanism in some way

• Causality is defined by potential outcomes, not by realized (observed) 
outcomes

• Observed association is neither necessary nor sufficient for causation
• Estimation of causal effects of a treatment (usually) starts with studying 

the assignment mechanism



Counterfactual model of causality (example)

• Causal states and relationship between potential and observed outcome 
variables

• Two alternative states of a cause with a distinct set of conditions, exposure to which 
potentially affects an outcome of interest

• College degree and earnings
• Outcome of interest: labor market earnings
• Two states: whether or not an individual has obtained a college degree
• Population of interest: adults between the ages 30 and 50
• The causal effect of a college degree is about 40% higher wages on average (Angrist 

and Pischke 2009)     
• Alternative causal states are referred to as alternative treatments

• Treatment: college degree
• Control: no college degree 



Counterfactual model of causality (cont.)

• Key assumption:
• each individual in the population of interest has a potential outcome under 

each treatment state, even though each individual can be observed in only 
one treatment state at any point in time

• Causal effect of college degree
• Adults who have completed only high school degrees have theoretical what-if 

earnings under the state “have a college degree”
• Adults who have obtained a college degree have theoretical what-if earnings 

under the state “have only a high school degree”
• These what-if potential outcomes are counterfactuals 



Counterfactual model of causality (cont.) 
• Potential outcomes of each individual are defined as true values of outcome of 

interest that would result from exposure to alternative causal states
• Potential outcomes of each individual 𝑖𝑖 are 𝑦𝑦𝑖𝑖1 and 𝑦𝑦𝑖𝑖0, where superscript 1 

signifies treatment state and superscript 0 signifies control state
• In theory, an individual level causal effect can be defined as a simple difference 

𝑦𝑦𝑖𝑖1 − 𝑦𝑦𝑖𝑖0

• However, it is impossible to observe both 𝑦𝑦𝑖𝑖1 and 𝑦𝑦𝑖𝑖0 for any individual, thus, 
causal effect cannot be observed and directly calculated at the individual level

• Researcher must analyze observed outcome variable Y that takes on values 𝑦𝑦𝑖𝑖1
and 𝑦𝑦𝑖𝑖0 for those in treatment and control states

• 𝑦𝑦𝑖𝑖0 is unobservable counterfactual outcome for individual 𝑖𝑖 in treatment group, 
and 𝑦𝑦𝑖𝑖1 is unobservable counterfactual outcome for individual 𝑖𝑖 in control group



Some general comments

• In empirical research, we focus on estimating average causal effect for groups of 
individuals defined by specific characteristics

• To effectively estimate average causal effect, the process by which individuals of 
different types are exposed to the cause of interest have to be modelled

• Doing so requires plausible assumptions that allow for the estimation of average 
unobservable counterfactual values for specific groups of individuals

• If assumptions are plausible and appropriate methods of estimation and 
statistical inference are used, then an average difference in the values 𝑦𝑦𝑖𝑖can be 
given a causal interpretation



Causal analysis using experimental versus 
observational data
• Randomized experiments

• Assignment mechanism is known and controlled, so estimating causal effect is 
straightforward in this case 

• Randomization is called the “gold standard” for causal inference because it balances 
observed and unobserved confounders

• Cannot always randomize so we do observational studies, where we need 
to adjust for the observed and unobserved covariates

• Assignment mechanism not known, usually depends on covariates
• Need to model for dependency and take this into account

• We have to design observational studies that approximate experiments
• In an observational study researcher should always ask himself: How would the study 

be conducted if it were possible to do it by controlled experimentation (Cochran 
1965)



Approximating Experiments

• It is important to distinguish between:
• Covariates: Pre-treatment variables, potential confounders
• Outcomes: Variables potentially affected by the treatment

• Randomized Experiment: Well-defined treatment, clear distinction 
between covariates and outcomes

• Better Observational Study: Well-defined treatment, clear distinction 
between covariates and outcomes

• Poorer Observational Study: 
• Hard to say when treatment began or what treatment really is
• Distinction between covariates and outcomes is blurred
• No baseline survey



Observational Studies: Key Questions

• How were treatments assigned?
• Randomized Experiment: Random assignment.
• Better Observational Study: Assignment is not random, but assignment 

mechanism is clearly described. Try to find “natural experiments”, where 
assignment is “as good as random”

• Poorer Observational Study: No attention given to the assignment mechanism
• Were treated and controls comparable?

• Randomized Experiment: Balance table for observables
• Better Observational Study: Balance table for observables and ideally 

sensitivity analysis for unobservables
• Poorer Observational Study: No direct assessment of comparability is 

presented



Main identification strategies for causal 
analysis using observational data
• Difference-in-differences: unobservables may differ, but their effect 

may not change much in time
• Instrumental variables: find variables that “randomize” some units 

into treatment
• Regression discontinuity designs: exploit (sharp or fuzzy) 

discontinuities in probability of treatment assignment
• Matching methods: match treatment and control groups using their 

observable characteristics
• Next week we will learn more about causal inference using 

experimental and observational data 



Thank you
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